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Abstract. We solve the higher-order nonlinear Schrödinger equation, which describes the
propagation of femtosecond pulses in nonlinear fibres. A set of new soliton solutions is obtained.

For many years, much attention has been paid to soliton communication in optical fibres
owing to its potential applications [1–4]. It is well known that the propagation of picosecond
pulses in optical fibres is described by the nonlinear Schrödinger equation (NLS) [1, 2].
However, for ultrashort femtosecond pulses, the NLS is invalid and is substituted with a
higher-order nonlinear Schrödinger equation given by [3, 4, 6]

iuz − 1
2αutt + |u|2u + iεuttt + iδ|u|2ut + iρu2u∗

t = 0 (1)

where u = (n2ω0/c)
1/2q, α = ±βωω, ε = ± 1

6βωωω, δ = (4/ω0) + (2γ /b) > 0,
ρ = (2/ω0) + (2γ /b) > 0, q is the slowly-varying envelope of the electromagnetic field,
c is light speed,n2 is the nonlinear index of refraction,βωω and βωωω are the dispersion
parameters evaluated at the carrier frequencyω0, b is the radius of the frequency-dependent
electromagnetic mode propagation in the fibres,γ is a parameter depending on the fibre
geometry andz and t represent the space and time coordinates, respectively. Ifρ = 0,
equation (1) becomes the Hirota equation [5], of which there existN -soliton solutions at
ε = − 1

6αδ. Forρ 6= 0, equation (1) is no longer integrable. However, the hyperbolic secant
(bright) and hyperbolic tangent (dark) soliton solutions for equation (1) have been obtained
[6]. In this letter, we present a set of cusp solitary wave solutions of equation (1). When
the cusps are rounded off, we recover these solutions in [6].

We assume

u = ei(Rt+�z+80)W(z, t) (2)

whereR, � and 80 are real constants andW is the amplitude. Substituting equation (2)
into equation (1), we have{

Wtt = AW + BW 3

Wz + (εA − αR − 3εR2)Wt + (3εB + δ + ρ)W 2Wt = 0
(3)

where,A andB are real constants and

R =
1
2αB − 1

ρ − δ − 3εB
� = 1

2αR2 + εR3 − A( 1
2α + 3εR). (4)

For equations (3), we obtain the exact solutions whenA is a parameter andB = −(δ+ρ)/3ε.
Let ξ = t + (αR + 3εR2 − εA)z, then equations (3) can be rewritten as

Wξξ = AW + BW 3. (5)
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It is easy to find the first integral of equation (5)

Wξ = ±(AW 2 + 1
2BW 4 − C)1/2 (6)

where the integral constantC = (AW 2 + 1
2BW 4)|ξ=±∞ = 0 or −A2/2B.

From equation (6), we have following solutions.

(1) WhenA > 0, B > 0, (i.e. ε < 0),

W =
√

8AP/B

P e
√

A|ξ−ξ0| − e−√
A|ξ−ξ0|

P = constant> 1. (7)

(2) WhenA > 0, B < 0 (i.e. ε > 0),

W =
√−8AP/B

P e
√

A|ξ−ξ0| + e−√
A|ξ−ξ0|

P = constant> 0. (8)

(3) WhenA < 0, B > 0,

W =
√

−A

B

P e
√−A/2|ξ−ξ0| + e−√−A/2|ξ−ξ0|

P e
√−A/2|ξ−ξ0| − e−√−A/2|ξ−ξ0| P = constant> 1 (9)

and

W =
√

−A

B

P e
√−A/2|ξ−ξ0| − e−√−A/2|ξ−ξ0|

P e
√−A/2|ξ−ξ0| + e−√−A/2|ξ−ξ0| P = constant> 1 (10)

whereξ0 is an arbitrary real constant.
The solutions (7)–(10) are of the solitary wave shape with a cusp atξ0. Obviously,

equations (8) and (10) are nothing but the hyperbolic secant and hyperbolic tangent soliton
solutions, respectively, presented previously, if the cusps are rounded off (i.e.P = 1) [6].

In summary, we have obtained a set of cusp soliton solutions of the higher-order
nonlinear Schr̈odinger equation (1). These results are expected to have an important
application in future optical communications and other research.
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